US009047136B2

a2z United States Patent (10) Patent No.: US 9,047,136 B2
Thanga et al. 45) Date of Patent: Jun. 2, 2015

(54) METHOD AND SYSTEM FOR MIGRATING (56) References Cited
THE STATE OF A VIRTUAL CLUSTER
U.S. PATENT DOCUMENTS

(75) Inventors: Zoram Thanga, Bangalore (IN); Ellard

. 8,090,744 B1* 1/2012 Bairdcccoeevvieine 707/791
T. Roush, Burlingame, CA (US) §350,503 B2* 1/2013 Golosovker etal. 718/1
2005/0262411 Al* 112005 Vertesetal. 714/741
(73) Assignee: ORACLE INTERNATIONAL 2006/0200821 Al* 9/2006 Cherkasovaetal. 718/1
CORPORATION, Redwood Shores, 2011/0022711 A1* 1/2011 Cohn ..ooovovvioiiviiirnnns 709/225
CA (US) 2011/0161730 Al* 6/2011 Van Der Merwe et al. 714/15
2011/0246985 Al* 10/2011 Zhouetal.ccceeevveneenn. 718/1
(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
patent is extended or adjusted under 35
U.S.C. 154(b) by 686 days. Primary Examiner — Craig Dorais
(74) Attorney, Agent, or Firm — Park, Vaughan, Fleming &
(21) Appl. No.: 12/813,744 Dowler LLP
(22) Filed: Jun. 11, 2010 (57) ABSTRACT
(65) Prior Publication Data The admimstrative work ne?ed.ed to conﬁggre avirtual cluster
is a major obstacle that limits its adoption by customers.
US 2011/0307886 Al Dec. 15, 2011 Moreover, an organization can spend much time and effort
testing a cluster configuration and would like to deploy this
(1) Int. Cl. cluster configuration at many sites. To address these prob-
GOG6F 3/00 (2006.01) lems, the disclosed embodiments provide a mechanism that
Go6l’ 9/44 (2006.01) facilitates migrating a virtual cluster from a first computer
Go6l’ 9/46 (2006.01) system to a second computer system. During operation, the
GOG6F 13/00 (2006.01) system captures the virtual cluster configuration state, includ-
GO6l' 9/50 (2006.01) ing application configuration state and executables. The sys-
(52) US.CL tem then instantiates this captured state on a second computer
CPC e, GO6F 9/5077 (2013.01) system, thus re-creating the virtual cluster state of the first
(58) Field of Classification Search computer system on the second computer system.
None
See application file for complete search history. 20 Claims, 14 Drawing Sheets

START

[EXTRACT ARCHIVE FILES ON EACH MACHINE OF THE]

SECOND COMPUTER SYSTEM
1202

v

[IMPORT VIRTUAL CLUSTER STATE
1204

!

[MODIFY CONFIGURATION OF VIRTUAL CLUSTER TO)
MATCH NEEDS OF SECOND COMPUTER SYSTEM
1206

v

CREATE RESOURCES REQUIRED BY THE VIRTUAL
CLUSTER
1208

v

IMPORT THE CONFIGURATION STATES FOR ALL
APPLICATIONS INTO THE VIRTUAL CLUSTER
121

!

[LOAD THE EXECUTBLES FILES ASSOCIATED WITH THE]
OPERATING SYSTEM, THE VIRTUAL CLUSTER, AND
APPLICATIONS INTO THE VIRTUAL CLUSTER

|

[ACTIVATE THE NEW VIRTUAL CLUSTER]
1214

!

IMPORT APPLICATION CONFIGURATION DATA INTO]

VIRTUAL CLUSTER

U.S. Patent Jun. 2, 2015 Sheet 1 of 14 US 9,047,136 B2

4-MACHINE CLUSTER
100

STORAGE
SYSTEM

STORAGE
SYSTEM

NETWORK)
[[;\jip] 1
== = == |
== [—=1] [—=1] (—=]

[
"\/
E

2 1 106 1

H H
0 0
l ; NETWORK ; j

5 118
\

>CUENT CLIENT bCUENT
120 122 124

FIG. 1

U.S. Patent Jun. 2, 2015 Sheet 2 of 14 US 9,047,136 B2
SALES CLUSTER (212D
200 SALES

DATABASE DATABASE

—

=

=

—

_Auonuo__
MACHINE 4

1

[

anoonoo

MACHINE 1
224

FIG. 2B

FINANCE CLUSTER
220

L

__{oonooook_

MACHINE 2
226

ENGINEERING CLUSTER

230

ENG
DATABASE

00

=a—
=ac—
=ac—
cac—
=ac—
(=]
=]

= ™~

MACHINE 2
236

FIG. 2C

U.S. Patent Jun. 2, 2015 Sheet 3 of 14 US 9,047,136 B2

4-MACHINE CLUSTER

300
SALES VIRTUAL CLWUSTER 310
T T s mEmmm—_—_— —_————————— —_—___———— N
' VIRTUAL NODE VIRTUAL NODE VIRTUAL NODE (ViIRTUAL NoDE) |
I SALES DB SALES DB SALES DB SALES DB [
312 314 316 318 |

() |
______,_,_______,,__________i,___.

FINANCE VIRTUAL GLUSTER 320

/ _______ —_e_—————————— -
| [virRTuALNODE) [VIRTUAL NODE] :
| | FiINaNCE DB FINANCE DB
| 322 324 |
\ |
—-— ENGINEERING VIRTWAL CLUSTER 326

_ENGINEERING VIF TUAL CLUSTER 326 \

VIRTUAL NODE VIRTUAL NODE |

ENG DB ENG DB I

328 330 I

)

FINANCE
DATABASE

FIG. 3

U.S. Patent Jun. 2, 2015 Sheet 4 of 14 US 9,047,136 B2

2-MACHINE CLUSTER

400
404
— —— ——— — — — — — e e e ———— — e e e —— e —— — \
f VIRTUAL NODE WEB FRONT-END TIER VIRTUAL NODE WEB) |
I VIRTUAL CLUSTER
— SCALABLE APACHE CAPS: 2 CPU. 2 GB SCALABLE APACHE |H \
: 406 408 410 |
—_———————— -V - === s === }
@ o o o o e e o ——— — ~
("
VIRTUAL NODE APPLICATION TIER VIRTUAL NODE] |
AL J2EE APP VIRTUAL CLUSTER J2EE APP H—
| 412 CAPS: 2 CPU, 2 GB 116
I 414 — '
——e—————— — S s m———— - /
b ____ A ____ -
S
VIRTUAL NODE DATABASE TIER VIRTUALNODEY |
VIRTUAL CLUSTER
DB MYSQL : DB MYSQL I
CAPS: 4 CPU, 4 GB
418 o0 422 I
__________________ —_———]": ———/
FILE SYSTEM DATABASE FILE SYSTEM
FOR APACHE FOR J2EE APP

FIG. 4

U.S. Patent

Jun. 2, 2015
GLOBAL ZONE 1
ZONE 04

502

APPLICATIONS

508

APPLICATIONS

510

Sheet 5 of 14

US 9,047,136 B2

ZONE N
506

APPLICATIONS

512

ORACLE SOLARIS OPERATING SYSTEM 514

HARDWARE 516

FIG. 5

U.S. Patent Jun. 2, 2015 Sheet 6 of 14 US 9,047,136 B2

CLUSTER
600
]
604
5 N e -
| GLOBAL ZONE GLOBAL ZONE '
GLOBAL CLUSTER

|| PHYS-CLUSTER-1 505 PHYS-CLUSTER-2 | |
I 608 610 |
mm—————— —————— — o —— /
{~ ~ "ZONE61a ZONECLUSTER 612 ZONEG16 \l
: ZONE: ZCFOO ZONE CLUSTER: ZCFOO| ZONE: ZCFOO |

HOSTNAME: PZCFOO1 |P ADDRESSES: HOSTNAME: PZCF0O02 |,
IIN_cPus=2 193,454 N_CPUS = 2 |
| | NIC: BGEO 123.4.55 NIC: BGEO
| | IP ADDRESS: 123.4.5.1 123.4.5.6 IP ADDRESS: 123.4.52 |l
| |
N . /
ZONE ZC DATA CRS data GLOBAL APP DATA ZONE ZC DATA

618 620 622 624

FIG. 6

U.S. Patent

Jun. 2,

2015 Sheet 7 of 14

2-MACHINE CLUSTER 700

US 9,047,136 B2

ZONE CLUSTER
MANAGER

706

GLOBAL ZONE 704

RGM ZC

714

ZONE 712 (VIRTUAL NODE)

RESOURCE
GROUP 1

716

GLOBAL
CLUSTER RGM

A 4

710

(RESOURCE
GROUP 2
718

[CLUSTER CONFIGURATION REPOSITORY MANAGER J

720

ORACLE SOLARIS CLUSTER OPERATING SYSTEM KERNEL 722

MACHINE 702

ZONE 738 (VIRTUAL NODE)

GLOBAL ZONE 730
ZONE CLUSTER
MANAGER
732 ZONE CLUSTER RGM 2
RGM 740
734
7Y

GLOBAL

CLUSTER RGM
736

RESOURCE
GROUP 1
742

RESOURCE
GROUP 2
744

746

[CLUSTER CONFIGURATION REPOSITORY MANAGER J

\,

ORACLE SOLARIS CLUSTER OPERATING SYSTEM KERNEL 748

MACHINE 728

FIG. 7A

U.S. Patent Jun. 2, 2015 Sheet 8 of 14 US 9,047,136 B2

CLZC CMDS CONFIG MAN APP CMDS

774 | 776 MACHINE 750
GLOBAL ZONE 752 ZONE (VIRTUAL NODE) 758
(RESOURCE)
|~ TGTOBAL Ty GROUP 1
\ CLUSTERRGM | rRemzc YA\ 782)
ZONE | 755 ZC-A
- == (oo o)
&Higéﬁ 760 RESOURCE
" GROUP 2
75 764
|
I ZONE (VIRTUAL NODE) 759
oo o
ZONE CLUSTER VR RESOURCE
2C-BRGM ZCB GROUP 3
\ Y,
RW ZC INFO R/W RGM INFO APP MANAGEMENT 772
CREATE{DESTROY CCR Y 4
770
CLUSTER CONFIGURATION
REPOSITORY MANAGER ORACLE SOLARIS
766 CLUSTER
OPERATING SYSTEM
KERNEL 768

READ/WRITE CCR DATA 778

A 4

— lete/cluster/cer/ 780

GLOBAL CLUSTER 782| ZONE CLUSTER ZC-A 784 [etc/cluster/ccr/ZC-A
(VIRTUAL CLUSTER CONFIG STATE 786)

(APPLICATIONS CONFIG STATE 788)
(VIRTUAL NODES CONFIG STATE 790)

ZONE CLUSTER ZC-B 792 /etc/cluster/ccr/ZC-B
(VIRTUAL CLUSTER CONFIG STATE 793)

(_ APPLICATIONS CONFIG STATE 794)
\ (VIRTUAL NODES CONFIG STATW
STORAGE SYSTEM

FIG.7B 799

/etc/cluster/cer/global

U.S. Patent

Jun. 2, 2015 Sheet 9 of 14

US 9,047,136 B2

/etc/cluster/cer/ZC-A 800

r

VIRTUAL CLUSTER CONFIGURATION STATE 802

NAMES OF VIRTUAL CLUSTER NODES
MAPPING VIRTUAL CLUSTER NODES TO PHYSICAL
NODES
NETWORK RESOURCES (E.G., IP ADDRESSES)
FILE SYSTEMS
STORAGE DEVICES
SECURITY PRIVILEGES
RESOURCES (E.G., CPUS, MEMORY)

ETC.

APPLICATION CONFIGURATION STATE 804

RESOURCE TYPES
RESOURCE GROUPS
RESOURCES (E.G., FILE SYSTEMS, IP ADDRESSES,
DEPENDENCIES)

ORACLE SOLARIS OPERATING SYSTEM STATE 808

VIRTUAL NODES CONFIGURATION STATE 806

SOFTWARE PACKAGES INFO
PATCHES

FIG. 8

U.S. Patent Jun. 2, 2015 Sheet 10 of 14 US 9,047,136 B2

VIRTUAL CLUSTER EXECUTABLES 900

(VIRTUAL NODE “1” EXECUTABLES 90?

ORACLE SOLARIS OS BINARIES 904
ORACLE SOLARIS CLUSTER
BINARIES 906

APPLICATION BINARIES 908

VIRTUAL NODE “2” EXECUTABLES 910

VIRTUAL NODE “3” EXECUTABLES 912J

[APPLICATIONS DATA 914]

FIG. 9

U.S. Patent Jun. 2, 2015 Sheet 11 of 14 US 9,047,136 B2

START

CAPTURE THE STATE OF A VIRTUAL CLUSTER OF A
FIRST COMPUTER SYSTEM WHERE THE VIRTUAL
CLUSTER INCLUDES ONE OR MORE VIRTUAL NODES
1002

INSTANTIATE THE CAPTURED STATE OF THE VIRTUAL

CLUSTER ON A SECOND COMPUTER SYSTEM
1004

FIG. 10

U.S. Patent Jun. 2, 2015 Sheet 12 of 14 US 9,047,136 B2

START

HALT THE VIRTUAL CLUSTER

1102

!

CAPTURE VIRTUAL CLUSTER CONFIGURATION
STATE, APPLICATION CONFIGURATION STATE,
VIRTUAL NODES CONFIGURATION STATE INTO
COLLECTION OF CONFIGURATION FILES
1104

7

CAPTURE BINARIES: OPERATING SYSTEM,
VIRTUAL CLUSTER, APPLICATIONS IN
COLLECTION OF EXECUTABLES FILES

1106

BUNDLE CONFIGURATION FILES AND
EXECUTABLES FILES INTO AT LEAST ONE
ARCHIVE FILE
1108

!

REMOVE THE VIRTUAL CLUSTER FROM THE
FIRST COMPUTER SYSTEM
1110

FIG. 11

U.S. Patent

FIG. 12

Jun. 2, 2015 Sheet 13 of 14 US 9,047,136 B2

' START ’

A

y

EXTRACT ARCHIVE FILES ON EACH MACHINE OF THE
SECOND COMPUTER SYSTEM

12

02

A

y

IMPORT VIRTUAL
12

CLUSTER STATE
04

MODIFY CONFIGURATION

OF VIRTUAL CLUSTER TO

MATCH NEEDS OF SECOND COMPUTER SYSTEM

12

06

v

CREATE RESOURCES REQUIRED BY THE VIRTUAL
CLUSTER

12

08

v

APPLICATIONS INTO THE VIRTUAL CLUSTER

12

A

y

[LOAD THE EXECUTBLES FILES ASSOCIATED WITH THE

OPERATING SYSTEM, THE VIRTUAL CLUSTER, AND
APPLICATIONS INTO THE VIRTUAL CLUSTER

12

12

A

y

ACTIVATE THE NEW VIRTUAL CLUSTER

12

14

A

y

IMPORT APPLICATION CONFIGURATION DATA INTO
VIRTUAL CLUSTER

12

IMPORT THE CONFIGURATION STATES FOR ALL
10

16

END

U.S. Patent Jun. 2, 2015 Sheet 14 of 14 US 9,047,136 B2

COMPUTER SYSTEM 1302

DISPLAY P—— -
1314) - 4 (APPLICATIONS |
PROCESSOR 1316 I
' 1304 \ |
STORAGE 10138 |
\ 1308 \ 3 |

MEMORY . .
1306 DATA [
11 1320 I
§ N e e e e e s

KEYBOARD k POINTING
1310 DEVICE 1312

FIG. 13

e ™

APPARATUS 1402

CAPTURING INSTANTIATING
MECHANISM MECHANISM
1404 1406

FIG. 14

US 9,047,136 B2

1

METHOD AND SYSTEM FOR MIGRATING
THE STATE OF A VIRTUAL CLUSTER

BACKGROUND

1. Field

The present embodiments relate to clustered computer sys-
tems. More specifically, the present embodiments relate to
techniques for migrating the state of a virtual cluster from a
source cluster computer system to a target cluster computer
system.

2. Related Art

Until recently, it was common for customers to dedicate a
single physical cluster—a collection of interconnected com-
puters—to one cluster application or a closely related set of
cluster applications. The use of a dedicated cluster simplified
resource management and isolated application faults to just
the physical cluster. The relatively low cost of computer hard-
ware made this approach affordable.

Although application processing demands have grown
over time, in many cases these demands have grown at amuch
slower rate than the processing capacity of the computer
systems. As a result, many physical clusters now sit mostly
idle, with significant surplus capacity in all areas, including
processor, storage, and networking.

The large amounts of idle processing capacity present a
compelling opportunity to organizations to better utilize such
systems. For example, in an effort to reclaim some of the
unused capacity, some organizations have begun hosting mul-
tiple cluster applications on a single physical cluster. Con-
cerns, however, about unknown and unintended interactions
between cluster applications, especially with regards to secu-
rity and resource management, have made these organiza-
tions wary of mixing applications (sometimes even on tradi-
tional physical clusters of computing nodes). Allaying these
legitimate concerns and yet taking advantage of better system
utilization is a challenge.

Virtual clusters address these concerns and provide safer
ways to host multiple cluster applications in different virtual
clusters on a single hardware configuration. To take advan-
tage of idle processing capacity, one or more such virtual
clusters can run on the same physical hardware cluster con-
figuration. These virtual clusters are “islands of processing,”
which are isolated from each other. Hence, problems that may
plague one virtual cluster do not affect any other virtual
cluster, even though they are running on the same hardware.
A virtual cluster “virtualizes™ a physical cluster hosting a
cluster application in the same way that physical memory in
a computer system can be made “virtual” to give the illusion
that all the physical memory is available to a single applica-
tion and that the single application is the only application
running on the computer.

Though the technology to achieve virtualization has added
considerable flexibility—permitting multiple clusters to run
on the same hardware configuration for better utilization—it
comes at the cost of complexity. Today an operating system
can not only provide multiple separate application environ-
ments as exemplified by operating system virtualization tech-
nology, it can also run on either a virtual machine or a physical
machine. Thus, one machine may host multiple operating
systems; a single collection of hardware machines may sup-
port multiple clusters. Virtualization technology has blurred
the distinction between the clusters of hardware machines of
yesterday and one or more clusters coexisting on the same
hardware configuration of today.

Because an organization can spend significant time and
effort testing a virtual cluster configuration, it is convenient if

20

25

40

45

55

65

2

that same virtual cluster configuration can be easily migrated
to other sites. Moreover, the administrative work required to
configure a virtual cluster is a major obstacle that limits its
adoption by customers. Configuring a virtual cluster configu-
ration entails a large number of settings, including IP
addresses, node names, storage devices, file systems, appli-
cations, and so on—getting all the details just right is a time-
consuming and error-prone process.

SUMMARY

The described embodiments include a system for migrat-
ing the state of a virtual cluster from a first cluster system to
a second cluster system. In these embodiments, one or more
virtual clusters can “virtualize” the underlying hardware
computer system so that each virtual cluster appears to be a
separate cluster. A virtual cluster is a collection of one or more
virtual nodes, where each virtual node appears to be an under-
lying machine. A virtual cluster can span all the machines of
the underlying collection of hardware or any subset of those
machines. During operation, the system captures the state of
a selected virtual cluster on a first computer system. The
system then instantiates the captured state of the virtual clus-
ter on a second computer system. Next, this virtual cluster on
the second computer system becomes operational and can
begin serving client requests.

In some embodiments, capturing the state of the virtual
cluster involves extracting the identified state from the virtual
cluster. Note that the state of the virtual cluster includes the
virtual cluster configuration state, the application configura-
tion state, the virtual nodes configuration state, the data asso-
ciated with the applications, or the binaries associated with
the operating system, the virtual cluster, and the applications.

In some embodiments, instantiating the captured state of
the virtual cluster on the second computer system involves
receiving the captured state on each machine of the second
computer system and importing it to each computer of the
second computer system. During this process, the system
creates the resources required by the virtual cluster on each
machine; these resources may include one or more file sys-
tems, one or more devices, or one or more IP addresses. The
system may also modify the configuration details of a virtual
cluster for each machine of the second computer system
depending on the needs of the second computer system; for
example, the names and IP addresses of the machines of the
second computer system are likely to be different from those
machines of the first computer system. Then, the system
activates the new virtual cluster on the second computer sys-
tem. Finally, the system imports the data of all applications
into the virtual cluster.

In some embodiments, a virtual node represents a machine.
Note that a virtual node manages a portion of the resources of
the machine; these resources may include at least processors,
memory, IP addresses, or schedulers. Further, the virtual node
contains applications that share the managed portion of the
resources within the virtual node. Moreover, application
defaults, user faults, or system faults are isolated to the virtual
node and do not affect anything outside of that virtual node.

In some embodiments, the virtual node can be constructed
using the operating system virtualization approach.

In some embodiments, the virtual cluster configuration
state includes at least one of the following: one or more names
of the virtual nodes of the virtual cluster, a map of virtual
nodes to machines, one or more file systems, one or more
storage devices, one or more network resources, one or more
operating system resources, and a set of operating system
privileges.

US 9,047,136 B2

3

In some embodiments, the configuration state of the appli-
cations includes: resources such as file systems or network IP
addresses; resource types, such as highly available databases;
and resource groups, that group resources into units of recov-
ery such as highly available database systems or file systems.

In some embodiments, the virtual nodes configuration state
includes at least one of a configuration of each virtual node,
software package information, and any patches installed in
the virtual node of each machine.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 shows a four-machine hardware configuration for
clustering in accordance with some embodiments.

FIG. 2A shows a four-machine cluster for a sales organi-
zation in accordance with some embodiments.

FIG. 2B shows a two-machine cluster dedicated to a
finance organization in accordance with some embodiments.

FIG. 2C shows a two-machine cluster dedicated to an engi-
neering organization in accordance with some embodiments.

FIG. 3 shows a four-machine cluster hosting three virtual
clusters in accordance with some embodiments.

FIG. 4 shows an application consolidation example using
the three-tiered web-application-database tiers where all tiers
use separate virtual clusters in accordance with some embodi-
ments.

FIG. 5 shows Oracle® Solaris Zones in the context of the
Oracle® Solaris operating system in accordance with some
embodiments.

FIG. 6 shows the architecture of a virtual cluster in accor-
dance with some embodiments.

FIG. 7A shows a two-machine cluster with two global
zones implementing a global cluster and two zones (non-
global zones) implementing two virtual nodes of a virtual
cluster (or zone cluster) in accordance with some embodi-
ments

FIG. 7B shows a detailed view of a physical node with a
global zone implementing a global cluster and a single zone
implementing a virtual node in a virtual cluster in accordance
with some embodiments, together with the configuration data
for both a global cluster and virtual clusters stored in a storage
system.

FIG. 8 shows generally the three configuration states (vir-
tual cluster configuration state, application configuration
state, and virtual nodes configuration state) that make up the
configuration of a virtual cluster in accordance with some
embodiments.

FIG. 9 shows the general collection of executables (bina-
ries) that are identified, as part of the state of the virtual
cluster, in accordance with some embodiments.

FIG. 10 presents a flowchart that illustrates a process for
migrating the virtual state of a virtual cluster on a first com-
puter system to a second computer system in accordance with
some embodiments.

FIG. 11 presents a flowchart that illustrates a process for
capturing the complete virtual state of a virtual cluster in
accordance with some embodiments.

FIG. 12 presents a flowchart that illustrates a process for
instantiating the captured virtual state of a virtual cluster in
accordance with some embodiments.

FIG. 13 illustrates a computer system in accordance with
some embodiments.

FIG. 14 illustrates an apparatus in accordance with some
embodiments.

In the figures, like reference numerals refer to the same
figure elements. Moreover, multiple instances of the same

10

15

20

25

30

35

40

45

50

55

60

65

4

type of part may be designated by a common prefix separated
from an instance number by a dash.

DETAILED DESCRIPTION

The described embodiments include a system that migrates
the state of a virtual cluster from one system to another. More
specifically, the described embodiments capture the configu-
ration and application state of a virtual cluster on one com-
puter system, transfer the captured state to a second computer
system, and instantiate the captured state on the second com-
puter system.

Generally, a group of computers which are working
together are referred to as a cluster of computers (also called
a “cluster”), or a distributed system. In such a cluster the
computers (or “nodes”) are typically independent and inter-
connected, and cooperate to maintain shared state. Clusters
are useful because, among other things, they allow the sharing
of'information and resources over a potentially wide area and
serve numerous customers. Clusters can be scaled by incre-
mentally adding nodes. They can be highly available—when
one node fails, another node can take over the service and
provide potentially uninterrupted service. They can provide
the illusion of a single system. They rarely, if ever, crash all at
once. A distributed system of computing nodes is, therefore,
fundamentally different from a centralized system. It is also
harder to build such a distributed system out of intercon-
nected computers because of independent failures, and fac-
tors such as unreliable, insecure, and costly communication.

Such powerful, modular, and scalable clustered systems
can be built using inexpensive computing nodes coupled with
high-speed interconnection networks. They can take the form
of'loosely coupled systems, built out of workstations or mas-
sively parallel systems, or perhaps as a collection of small
symmetric multiprocessors (SMP) tightly-interconnected
through a low-latency high-bandwidth network. Such clus-
ters are attractive because traditional bus-based SMPs are
limited in the number of processors, memory, and I/O band-
width they can support.

FIG. 1 shows a 4-machine cluster 100 organized in a four-
machine computer hardware configuration (machine 1 102,
machine 2 104, machine 3 106, and machine 4 108) in accor-
dance with some embodiments. The figure shows four inde-
pendent computing machines that communicate with each
other over a network 116 (such inter-node communication
may also occur over the public network), and share one or
more external storage systems (storage system 110, storage
system 112, and storage system 114), a common architecture
often called “shared everything.” In some embodiments, net-
work 116 may be a public network shared with other systems
such as computer systems and storage systems. In other
embodiments, network 116 may be a private network. These
four machines may communicate with each other over this
private network without outside interference, and may also
access the storage systems.

In some embodiments, other cluster architectures are pos-
sible, such as “shared nothing” in which a storage system is
owned by each machine and is not shared with the other
machines. Applications like databases or web services may
run on any cluster machine. Note that the machines of a
cluster can be as close or as far from each other as dictated by
the requirements of the data services provided to clients. In
some embodiments, they could be tightly coupled (for
example, on the same rack or just in the same data center
room); in other embodiments, they may be loosely coupled
(campus clusters in which machines may be up to miles
apart); in yet other embodiments, they may be geographically

US 9,047,136 B2

5

distributed in which the machines may be separated by hun-
dreds to thousands of miles; or they may be aggregations of
clusters (clusters are organized into a kind of hierarchy of
clusters, often called “super clusters™).

In one embodiment, numerous clients such as client 120,
client 122 and client 124 may communicate with the four-
machine cluster 100 over a network 118 to request services
from the cluster. In another embodiment, network 118 may be
a public network, shared with many systems and many cli-
ents. In other embodiments, network 118 may be a private
network, for example, to restrict general access to specific
client machines or perhaps to run a test benchmark that is only
valid in a closed environment. In yet other embodiments,
network 116 and network 118 may be the same or different
network, whether public or private.

To provide data services that are highly available, a cluster
provides nearly continuous access to data and applications by
keeping the cluster running through failures that would nor-
mally bring down a single server system. Such a data service
is typically implemented by a failover application, which is a
single instance application that can run on just one machine at
a time. The system will restart the failover application on
another machine in response to a machine failure or admin-
istrative request. No single failure—hardware, software, or
network—can cause a cluster to fail. Hardware-based fault-
tolerant computer systems, on the other hand, certainly pro-
vide continuous access to data and applications, but at the
higher cost of specialized hardware. Such systems cannot
tolerate software failures.

To provide data services that scale, the cluster may add new
machines to increase overall system capacity. A scalable
application or data service comprises multiple application
instances running on different machines. A web service is a
good example of a scalable data service. Typically, a scalable
data service is composed of several instances, each of which
runs on different machines of the cluster. Together, these
instances look and behave as a single service for remote
clients of that service and implement the functionality of the
service. Which service instance satisfies a client request
depends on how the client requests are balanced across the
cluster machines.

To achieve both scalability and high availability for data
services, the architecture of the cluster system includes a
combination of hardware and software redundancy. Such data
services may require further support from the cluster itself. In
particular, a cluster achieves high availability and scalability
through a combination of the following hardware and soft-
ware: redundant disk systems, redundant hot-swappable
components, redundant communication, a high-availability
framework, and a scalability framework.

Redundant disk systems. These disk systems provide stor-
age and are generally mirrored to permit uninterrupted opera-
tion if a disk or its subsystem fails. Redundant connections to
the disk systems ensure that data is not isolated if a server,
controller, or cable fails. That is, the paths to the disk system
are highly available.

Redundant hot-swappable components. These compo-
nents, such as power supplies and cooling systems, improve
availability by enabling systems to continue operation after a
hardware failure. Hot-swappable components provide the
ability to add or remove hardware components in a function-
ing system without bringing down the system.

Redundant communication. A redundant high-speed inter-
connect among cluster machines provides highly available
access to resources from within the cluster. The machines in
the cluster may also be connected to a public network,
enabling clients on multiple networks to access the cluster.

15

20

30

40

45

50

6

High-availability framework. A cluster’s high-availability
framework can detect a machine failure quickly and switch
the application or service to another machine that runs in an
identical environment. At no time are all applications unavail-
able. Applications unaffected by a failed machine are fully
available during recovery. Furthermore, applications on the
failed machine become available as soon as they are recov-
ered. Note that a recovered application does not have to wait
for all other applications to complete their recovery.

Scalability framework. A cluster’s scalability framework
permits data services to scale as new machines are added to
the cluster in the face of increased workload. It is desirable to
maintain the same perceived response time to which custom-
ers are already accustomed. The framework balances client
requests for service across multiple application instances of
the service running on different cluster machines, using dif-
ferent load-balancing policies.

A system should ideally detect whether a machine in a
cluster has actually failed, and should ideally do so within a
reasonable period of time: too aggressively, and a machine
will be kicked out of the cluster when it might only have been
heavily loaded and just slow to respond, thus impacting avail-
ability; or too conservatively, and an actual failed machine
will stay in the cluster too long and delay an application
failover, thus severely impacting availability. The system
should ideally reconfigure the cluster to include only opera-
tional and accessible machines. The system should also fur-
ther decide which set of such machines constitute an opera-
tional cluster that can serve client requests; we call such a set
of machines a “quorum,” and it is usually a majority of the
number of machines in the cluster. As part of reconfiguration,
the system should also decide the fate of the minority number
of machines. The minority of machines is not legally part of
the cluster anymore, and should somehow be prevented from
doing anything that could compromise either the integrity of
the cluster or the correctness of the data. All of these activities
and decisions should ideally be made quickly and seamlessly
without affecting the availability or scalability of a data ser-
vice in the face of hardware and software failures. It is this
complex functionality of a cluster that makes it a daunting
engineering challenge and one of the principal reasons why
clustered applications are less common in the commercial
marketplace today.

Another problem relates to how to determine which
machines constitute a cluster, that is, determining cluster
membership. Over the lifetime of such a cluster, a machine
may fail for a variety of reasons and thus leave the cluster,
which affects cluster membership (as well as high availabil-
ity). Similarly, a machine that previously failed may return to
service and rejoin the cluster, which also affects cluster mem-
bership. In some embodiments, a solution involves each
machine in the cluster periodically sending “heartbeat” mes-
sages to all other machines in the cluster, indicating that that
machine is “alive.”

Until quite recently, it was common to dedicate a single
cluster to one cluster application or a closely related set of
cluster applications. Customers were willing to use one clus-
ter per application for several reasons. Security isolation
ensures that applications and users from different organiza-
tions could not see or affect others. Application fault isolation
ensures that the failure of one application did not affect appli-
cations in other areas since different organizations insist that
their own information remains private. Resource manage-
ment provides controls on the utilization of resources by the
applications of each organization, particularly since different
organizations do not want their schedules impacted by prob-
lems of other organizations. Computer resources are not free.

US 9,047,136 B2

7

Costs should ideally be allocated to the different organiza-
tions, and the different organizations want guarantees that
they receive the resources for which they have paid.

The relatively low cost of computer hardware made this
approach affordable. FIGS. 2A-2C show this typical
approach to supporting three types of applications, with a
different cluster supporting each type of application in accor-
dance with some embodiments. For example, F1G. 2A shows
a four-machine Sales Cluster 200 comprising machine 1
(202), machine 2 (204), machine 3 (206), and machine 4
(208) with two sales databases 210 and 212, which may
communicate over a network. FIG. 2B shows a two-machine
Finance Cluster 220 comprising machine 1 (224) and
machine 2 (226) with a single finance database 222, which
may communicate over a network 228. FIG. 2C shows a
two-machine Engineering Cluster 230 comprising machine 1
(234), machine 2 (236), and a single engineering database
232, which communicate over a network 238. In one embodi-
ment, network 214, network 228, and network 238 may be a
public network. In another embodiment, network 214, net-
work 228, and network 238 may be a private network. In
another embodiment, these networks may be some combina-
tion of public or private. In other embodiments, these net-
works may include storage networks. One can view each
cluster as a kind of “island” of high-availability and scalabil-
ity. In such isolated systems, there is no danger of security and
resource management interactions. Note that these examples
are not meant to limit the scope of the present invention but
serve to illustrate their possible uses.

Though the technology to achieve virtualization has added
considerable flexibility—permitting multiple clusters to run
on the same hardware configuration for better utilization—it
may increase complexity. Today an operating system can now
run on either a virtual machine or a physical machine. Thus,
one machine may host multiple operating systems; a single
collection of hardware machines may support multiple clus-
ters. Such technology has blurred the distinction between the
clusters of hardware machines of yesterday and one or more
clusters coexisting on the same hardware configuration host-
ing multiple operating systems of today. In one embodiment,
a “base cluster” is a collection of physical machines. In other
embodiments, a “base cluster” is a collection of virtual
machines, each of which may be running one or more oper-
ating system instances. To encompass both definitions, a
“cluster” or “base cluster” shall refer to the set of machines
hosting a cluster, where the machines can be either physical
machines or virtual machines. Further, when we talk about a
“machine” it will be either a physical machine or a virtual
machine.

The trend toward more powerful computers has been
accompanied by gains in other resources, such as increased
storage capacity and network bandwidth. With greater power
have come greatly improved price-to-performance ratios.
While application processing demands have grown, in many
cases these demands have grown at a much slower rate than
the processing capacity of the computer system. As a result,
many clusters now sit mostly idle, with significant surplus
capacity in all areas, including processor, storage, and net-
working.

The large amounts of idle processing capacity present an
opportunity to organizations to better utilize such systems.
For example, in an effort to reclaim some of the unused
capacity, some organizations have begun hosting multiple
cluster applications on a single cluster. Concerns, however,
about unknown and unintended interactions between cluster
applications, especially with regard to security and resource
management, make these organizations wary of mixing appli-

10

15

20

25

30

35

40

45

50

55

60

65

8

cations (sometimes even on a traditional base cluster of
machines). Note that virtual clusters abstract away from the
underlying machines and are dedicated to the same applica-
tions that were hosted on the base cluster.

Virtual Clusters

In the same way that physical memory on a computer was
made “virtual” to give the illusion that all the physical
memory was available to a single application and that the
application was the only one running on the computer, it is
possible to “virtualize” a base cluster hosting data service
applications, that is, create a virtual cluster for those same
applications. Two or more virtual clusters hosting different
data service applications can run on the same hardware clus-
ter configuration. It is important that all the hardware and all
of its resources appear to be owned by each of the virtual
clusters and that each virtual cluster is isolated from all other
virtual clusters and is, therefore, unaffected by problems that
may plague other virtual clusters.

The three base clusters shown in FIG. 2A-2C can be virtu-
alized as shown in FIG. 3 in accordance with some embodi-
ments. FIG. 3 shows three virtual cluster databases running
on the same four-machine cluster 300. The databases of
FIGS. 2A-2C from three different organizations can now be
consolidated upon one four-machine cluster 300. In particu-
lar, the Sales Cluster 200 of FIG. 2A can now be represented
as a virtual cluster, shown in FIG. 3 as the Sales Virtual
Cluster 310. Each “machine” of the virtual cluster is now a
“virtual node,” the virtualization of the original correspond-
ing machine. For example, FIG. 3 shows the virtual node sales
database 312 on machine 1 (302), virtual node sales database
314 on machine 2 (304), virtual node sales database 316 on
machine 3(306), and virtual node sales database 318 on
machine 4 (308). Note that all four virtual nodes are con-
nected to sales database 332. Similarly, the Finance Cluster
220 of FIG. 2B can be represented as its own virtual cluster,
shown in FIG. 3 as the Finance Virtual Cluster 320. FIG. 3
further shows the two virtual nodes on their corresponding
machines: virtual node finance database 322 on machine 1
(302) and virtual node finance database 324 on machine 2
(304). Note that the two virtual nodes are connected to finance
database 334. Finally, the Engineering Cluster 230 of FIG. 2C
can now be represented as its own virtual cluster, shown in
FIG. 3 as the Engineering Virtual Cluster 326. FIG. 3 further
shows the two virtual nodes on their corresponding machines:
virtual node eng database 328 on machine 3 (306) and virtual
node eng database 330 on machine 4 (308). Note that the two
virtual nodes are connected to engineering database 336.

Note that the Sales Virtual Cluster 310 occupies all four
machines of the cluster (machine 1 302, machine 2 304,
machine 3 306, and machine 4 308), and the Engineering
Virtual Cluster 326 occupies just two machines of the cluster,
sharing machines machine 3 (306) and machine 4 (308) with
the Sales Virtual Cluster 310. The Finance Virtual Cluster 320
shares machines machine 1 (302) and machine 2 (304) with
the Sales Virtual Cluster 310, but no machines with the Engi-
neering Virtual Cluster 326.

FIG. 4 shows a multiple-tier consolidation example, in
accordance with some embodiments, of the well-known
three-tier datacenter model in a two-machine cluster 400:
front-end tier, application tier, and database tier. Each virtual
cluster has two virtual nodes, each representing an underlying
machine (machine 1 402 and machine 2 404). Virtual clusters
support the consolidation of applications from all three tiers.
A scalable web server can implement the front-end tier virtual
cluster 408 on virtual node web scalable apache 406 and
virtual node web scalable apache 410; data is stored in a file
system for apache 424. Java™ 2 Platform, Enterprise Edition

US 9,047,136 B2

9

(J2EE™) application implements the application tier virtual
cluster 414 on virtual nodes virtual node J2EE app 412 and
virtual node J2EE app 416; data is stored in a file system for
J2EE app 428. MySQL™ database implements the database
tier virtual cluster 420 on virtual nodes virtual node db
MySQL™ 418 and virtual node database (db) MySQL™
422; the data is stored in a database 426. All tiers use separate
virtual clusters.

Virtual Nodes

In a virtual cluster, a virtual node is a container for appli-
cations. A virtual node offers the same security isolation,
application fault isolation, and resource management fea-
tures, in accordance with some embodiments, which custom-
ers demand of the one application-one cluster system. To
provide security isolation for an application, an application or
user within a virtual node can only see and modify data within
that virtual node.

To provide resource management, the system administra-
tor can control the allocation of resources at the granularity of
a virtual node. The system administrator can assign specific
resources, such as file systems, to a virtual node. The system
administrator can effectively control the percentage of some
resources, such as CPU power, allocated to a virtual node.
Resource management provides the assurance that each orga-
nization, which is usually charged for computer services, gets
what it pays for.

To provide application fault isolation, important cluster
applications should preferably not recover from errors by
rebooting the machines, but rather by rebooting the virtual
node when the application resides within a virtual node. The
reboot of one virtual node does not affect any other virtual
node residing on the machine. Hence, the failure of an appli-
cation in one virtual node does not impact applications in
other virtual nodes. Virtual nodes, therefore, can safely con-
solidate applications from separate machines onto a single
machine.

To implement such a virtual node as a container for appli-
cations, virtualization technologies can provide safe ways to
host multiple applications in different virtual nodes on a
single hardware configuration. A range of virtualization tech-
nologies that address network, storage, desktop, server, and
operating system virtualization are oftered by various com-
panies. These virtualization choices facilitate hosting mul-
tiple applications on a single machine system, and include
hardware partitions, virtual machines, operating system vir-
tualization, and resource management. Each has its advan-
tages and disadvantages, but only one satisfies the require-
ments of security, resource management, and application
fault isolation for a virtual cluster: operating system virtual-
ization.

The operating system virtualization approach creates an
isolated environment for an application or set of applications
under a single operating system image. This approach isolates
software applications and services using flexible, software-
defined boundaries and allows many private execution envi-
ronments to be created within a single instance of the oper-
ating system, cleanly dividing system and application
administration. The virtualized execution environment pro-
vides a unit of fault isolation. Rather than rebooting the
machine, it is enough to “reboot” the virtualized execution
environment. Since there is only one operating system
instance to administer (such as with the use of patches and
backups), administration costs are reduced. The performance
overhead is generally minimal. This virtualized execution
environment is a unit of granularity for resource manage-
ment. Applications within this environment should ideally
share the resources assigned to it. A system administrator can

10

15

20

25

30

35

40

45

50

55

60

65

10

dedicate resources to this virtualized execution environment
or grant some specific share of resources for its own use.
Oracle Solaris Zones

The Zones feature of the Oracle® Solaris 10 operating
system from Oracle Corporation is an example of operating
system virtualization in accordance with some embodiments.
Oracle® Solaris Zones offers operating system virtualization
that provides the foundation for implementing virtual clus-
ters. Oracle Solaris Zones isolates software applications and
services using flexible, software-defined boundaries and
allows many private execution environments to be created
within a single instance of the Oracle Solaris 10 operating
system.

FIG. 5 shows Oracle Solaris Zones in the context of the
Oracle Solaris operating system 514 on hardware 516 in
accordance with some embodiments. The underlying Oracle
Solaris operating system 514 has a single global zone (global
zone 502) which is both the default zone for the system and
the zone used for system-wide administrative control. The
global zone 502 may also contain applications 508. The sys-
tem administrator of the global zone 502 can create one or
more non-global zones (such as zone 1 504 and zone N 506)
and identifies all resources that will be made available to these
non-global zones. An application or user within a non-global
zone cannot see or affect things outside of the enclosing zone,
thus providing strong security. FIG. 5 shows that zone 1 504
contains applications 510, the ellipsis shows the possibility of
other non-global zones together with applications, and that
zone N 506 contains applications 512.

The zone is a unit of granularity for resource management.
Applications within a zone should ideally share the resources
assigned to the zone. A system administrator can dedicate
resources to a zone or grant some specific share of resources
for use by a zone. For example, a system administrator can
grant a Fair Share Scheduler share of 50 to zone A, 30 to zone
B, and 20 to zone C; and the result would be that zone A gets
50% of CPU resources, while zone B gets 30% and zone C
gets 20%.

The zone is a unit of fault isolation. For example, an
attempt within a zone to execute a reboot results in a zone
reboot instead of a machine reboot. This isolation helps pre-
vent application actions or faults from affecting applications
in other zones.

Implementing Virtual Clusters Using Oracle Solaris Zones

Combining the concept of the virtual cluster as a container
for applications with the concept of operating system virtu-
alization as embodied by Oracle Solaris Zones, we can create
an Oracle Solaris Virtual Cluster, or Zone Cluster, in accor-
dance with some embodiments. Since a zone provides the
illusion to a single machine application that the zone is a
machine dedicated for the use of the applications within that
zone, the zone cluster provides the illusion to cluster appli-
cations that the zone cluster is a cluster dedicated for the use
of cluster applications within that zone cluster. Similarly,
when a user logs in to the zone cluster, the user sees the virtual
cluster as a traditional cluster.

FIG. 6 shows the architecture of a cluster, Cluster 600,
implemented with Oracle Solaris Zones, in accordance with
some embodiments. There is one global cluster and one vir-
tual cluster in this particular configuration (of course, there
can be more than one virtual cluster). The global cluster
implements much of the complex functionality of the tradi-
tional cluster architecture, thereby considerably simplifying
the architecture of the virtual cluster; such a functionality
split allows the system administrator to focus on the cluster
applications. The virtual cluster implements the other side of
the functionality split that is specific to the virtual cluster.

US 9,047,136 B2

11

Think of the virtual cluster as “lightweight” compared to the
global cluster, which contains much of the heavy machinery.
In the remainder of this section, we describe briefly the vari-
ous components making up the architecture of a virtual clus-
ter—the basis of the virtual cluster configuration that will be
migrated to a target cluster—in terms of the virtual nodes,
access control, security, applications, virtual cluster admin-
istration, virtual cluster membership, file systems, storage
devices, volume manager devices, and networks.

Global cluster. FIG. 6 shows a global cluster 606 compris-
ing the global zones on the two machines machine 1 (602)
named “phys-cluster-1 608 and machine 2 (604) named
“phys-cluster-2 610” making up cluster 600. Phys-cluster-1
608 is implemented in a global zone on machine 1 (602).
Similarly, phys-cluster-2 610 is implemented in a global zone
onmachine 2 (604). The global cluster 606 contains all global
zones in a collection of machines. The global cluster spans all
machines making up the base cluster and looks to all appear-
ances like a traditional cluster. Like a traditional cluster, the
global cluster manages all the complexity of monitoring
membership status of each global zone and reconfiguring the
cluster whenever a global cluster node leaves the cluster due
to failures or rejoins the cluster, in some embodiments. The
global cluster decides which subset of global cluster nodes
constitute an active and operational cluster; making this deci-
sion may involve employing a tie-breaking device, imple-
mented in software or hardware (called a quorum device),
whenever the global cluster finds itself in the well-known
“split-brain scenario” through the notion of quorums and
majority voting. Further, like a traditional cluster, the global
cluster manages the configuration of zones on its resident
node and the application configuration information.

Zone cluster. FIG. 6 shows zone cluster 612 “zcfoo” in
accordance with some embodiments. A zone cluster is a col-
lection of non-global zones, where each non-global zone
represents a virtual node and is configured on a separate
machine (for simplicity, we will use “zone” to mean “non-
global” zone) in accordance with some embodiments. The
number of virtual nodes in a zone cluster is limited to the
number of machines in the cluster. A zone cluster can only
become operational after the global zone on the hosting
machine becomes operational. A zone of a zone cluster will
not boot when the global zone is not booted in a special cluster
mode. A zone of a zone cluster can be configured to automati-
cally boot after the machine boots, or the administrator can
manually control when the zone boots. A zone of a zone
cluster can fail, or an administrator can manually halt or
reboot a zone. All of these events result in the zone cluster
automatically updating its membership. All zone cluster
nodes should ideally be on machines belonging to the same
global cluster. The zone cluster nodes can be a subset of
machines for that same global cluster. While a zone cluster
depends upon a global cluster, a global cluster does not
depend upon any zone cluster. A zone cluster is a consider-
ably simpler cluster than its traditional base cluster counter-
part, as we alluded to earlier. Only the components needed to
directly support cluster applications are present, including
file systems, storage devices, networks, and zone cluster
membership, all of which we will be discussing in the follow-
ing paragraphs.

FIG. 6 shows a zone cluster 612 (zcfoo) deployed on a
two-machine cluster (machine 1 602 and machine 2 604), in
accordance with some embodiments. The zone cluster 612
(zcfoo) comprises two virtual nodes, each of which is imple-
mented in its own zone on its respective machine. Note that
the zone cluster itself as an entity may have resources allo-
cated to it such as IP addresses (123.4.5.4, 123.4.5.5, and

40

45

55

60

12

123.4.5.6). These resources are shared amongst the zones of
the zone cluster. In some embodiments, these three IP
addresses could be one of many classes of virtual cluster IP
addresses, such as failover IP addresses to support failover
data service applications or shared IP (virtual) addresses to
support scalable data service applications. For example, in
zone cluster 612 shown in FIG. 6, two IP addresses are used
by Oracle RAC (123.4.5.4, 123.4.5.5) as shared IP addresses,
and one IP address (123.4.5.6) is used with a failover appli-
cation. Zone 614 stores data on zone zc data 618 storage
system, on CRS data 620 storage system, and on global app
data 622 storage system. Zone 616 stores data on zone zc data
624 storage system, on CRS data 620 storage system, and on
global app data 622 storage system.

Virtual node. The virtual node on machine 1 (602), whose
host name is pzcfool, is implemented by zone 614 (zcfoo).
The zone has been allocated 2 CPUs, one public network
interface (bge0), and one public IP address 123.4.5.1. Note
that this public IP address is local to the zone, whereas as we
indicated earlier, the three IP addresses for zone cluster 612
(zcfoo) are allocated to the zone cluster as a whole. This
configured zone looks just like a real machine complete with
a public network interface and a public IP address as the
means for the outside world to communicate with the zone.
The virtual node on machine 2 (604), whose host name is
pzcfoo2, is implemented by zone 616 (zcfoo). This zone has
been allocated 2 CPUs, one public network interface (bge0),
and a different public IP address 123.4.5.2. The virtual cluster
configuration includes the names of the virtual nodes as well
as the mapping of virtual node names to the names of the
respective machines (that is, since each virtual node resides
on a machine, the configuration includes a map of virtual
node name to machine name).

Access control. The zone cluster provides a well-defined
boundary for access control purposes. An application within
a zone cluster can only see things within the zone cluster, and
can only modify things within the zone cluster. The virtual
cluster uses the zone resource management facilities. A sys-
tem administrator should ideally explicitly configure a zone
cluster to use any specific resource, such as a specific file
system, or that resource will not be available. This provides
the capability to isolate the resources of different cluster
applications running in zone clusters. The system adminis-
trator can explicitly control the usage of CPUs and memory at
the zone cluster level. Included in the virtual cluster configu-
ration is information about resource usage.

Security. The zone cluster security design follows the secu-
rity design for zones, in accordance with some embodiments.
The zone is a security container. The operating system checks
all requests to access resources, such as file systems, devices,
and networks, to determine whether such access has been
granted to that zone. When permission has not been granted,
the operating system denies access. Software in the global
zone is considered to be trusted, and has the responsibility to
check the access permissions based upon the originating zone
and deny any unauthorized access. Applications in a zone
cluster cannot tamper with software in the kernel. The overall
result is that the system restricts application access to just
authorized items.

Applications. Applications within a virtual cluster should
ideally remain within that virtual cluster. Note that an appli-
cation within a virtual cluster can only move between the
virtual nodes of the virtual cluster. All instances of an appli-
cation should ideally reside within the same virtual cluster.
This means that the virtual cluster is a cluster-wide container
for applications that can be used to separate cluster applica-
tions. When an application running in a zone cluster enters an

US 9,047,136 B2

13

error state and calls for a node reboot, the zone cluster reboots
the virtual node, which turns into a zone reboot. This means
that the failure of an application within one zone cluster does
notimpact cluster applications running in other zone clusters.

More specifically, an application is managed—started,
monitored, and stopped—by a major subsystem called the
Resource Group Manager (RGM), part of which runs in the
global zone and part of which runs in a specific zone, which is
actually hosting the application. We will discuss this split in
more detail later when we talk about how to capture the state
of'the virtual cluster. An application is regarded as a resource
type, such as ha-dbms that makes a DBMS application highly
available; in this case, the database application will fail over
to another zone on another machine whenever the original
zone fails. Applications are not the only resource type. Net-
work resources are a resource type; in particular, there is a
failover IP address resource type and a virtual (shared) IP
address resource type. The system administrator creates and
manages resources in containers called resource groups
(RGs). The RGM stops and starts resource groups on selected
zones in response to zone cluster membership changes.

For example, an end user may define separate databases for
marketing, engineering, and finance, each of which is a
resource of type ha-dbms. The system administrator places
these resources in separate resource groups so that they can
run on different nodes or zones and fail over independently.
You create a second resource type, ha-calendar, to implement
a highly available calendar server that requires a relational
database. The system administrator places the resource for
the finance calendar into the same resource group as the
finance database resource to ensure that both resources run in
the same zone and fail over together. The second resource
type is said to depend on the first resource type. An ha-dbms
resource type depends on a network resource type like a
failover IP address. The virtual cluster configuration includes
information about resource types, resources, and resource
groups for each application hosted in the virtual cluster.

Virtual cluster administration. The entire virtual cluster can
be administered by a single command from any machine. A
virtual cluster is configured and managed using a single com-
mand. The command has options to configure, install, boot,
and halt the virtual cluster or a subset of virtual nodes from
any machine in the system. The single point of administration
principle applies to the administration of the virtual cluster
platform. The RGM subsystem manages applications and the
resources used by applications, such as file systems and net-
work resources. The administrator can administer applica-
tions and their resources by executing RGM commands from
inside that virtual cluster or from the global cluster. The single
point of administration principle applies to the administration
of applications running in the virtual cluster.

Virtual cluster membership. Since a zone cluster is a set of
zones, one can say that a non-global zone (or the virtual node
it represents) is a “member” of a zone cluster, just as a global
zone is a member of a global cluster. For example, in FIG. 6,
we see that the zone cluster 612 (zcfoo) comprises of virtual
nodes pzctool and pzcfoo2. Thus, we say that virtual node
pzcfool is a member of zone cluster 612 (zcfoo) just as
pzcfoo2 is a member of zone cluster 612 (zcfoo). There are
two kinds of membership with respect to a zone cluster.

First, there is a static membership, which defines all the
virtual nodes of a zone cluster at the time of configuration of
the zone cluster. Second, there is a dynamic membership,
which defines a set of virtual nodes that are up and accessible
at any time during the lifetime of the zone cluster. Most of the
time this dynamic set is equal to the static set. The dynamic
membership changes as virtual nodes “leave” the zone cluster

30

40

45

50

55

14

because of failures or “join” the zone cluster as virtual nodes
reboot and become available and accessible. For example, if
virtual node pzcfoo2 fails or it is forced to reboot for some
reason, then the zone cluster 612 (zcfoo) comprises only of
virtual node pzcfool. Clients communicating with the virtual
node pzcfoo2 may see its connections terminate. We say that
a zone cluster undergoes “reconfiguration” when one or more
virtual nodes join or leave the membership. We also say that
the global cluster undergoes a similar kind of reconfiguration
when one or more global cluster nodes join or leave the
membership.

Each zone cluster has its own notion of membership, inde-
pendent of other zone clusters, which is consistent with the
notion that a zone cluster is an independent entity in its own
right but happens to be implemented on a set of machines.
Thus, if we refer back to FI1G. 3, the Sales Virtual Cluster 310
and the Engineering Virtual Cluster 326 have very different
ideas of membership. The Sales Virtual Cluster 310 com-
prises four virtual nodes, implemented on four machines
(machine 1 302, machine 2 304, machine 3 306, and machine
4 308), while the Engineering Virtual Cluster 326 comprises
only two virtual nodes that are implemented on two different
machines (machine 3 306 and machine 4 308). The Sales
Virtual Cluster 310 only cares about what happens to its four
virtual nodes, whereas the Engineering Virtual Cluster 326
only cares about its two virtual nodes. When machine 1 (302)
fails, the Sales Virtual Cluster 310 is affected, and its mem-
bership changes to exclude the failed virtual node, but—this
is the important point—the failure of machine 1 302 did not
affect the Engineering Virtual Cluster 326 notion of its mem-
bership. As far as the Engineering Virtual Cluster 326 is
concerned, there have been no failures and nothing has
changed.

The system maintains membership information for zone
clusters. Each machine hosts a component, called the Zone
Cluster Membership Monitor (ZCMM), which monitors the
status of all zone clusters on that machine. The ZCMM knows
which zones belong to which zone clusters.

A cluster application inside a zone cluster sees only the
membership status of that zone cluster. A zone cluster can run
on all machines of the base cluster or a subset of the machines
of'the base cluster. The global cluster and zone cluster mem-
bership information take the same form. Applications run-
ning in a zone cluster receive the same kind of information as
when running in the global zone. This means that applications
run identically in the zone cluster and global cluster with
respect to membership.

File systems. Zone clusters support access to a variety of
different types of file systems, including local, highly avail-
able, cluster, and NFS file systems, in accordance with some
embodiments. The virtual cluster configuration includes
information about specific file systems supported in the vir-
tual cluster.

Storage devices. Zone clusters support direct access to
storage devices including disks and RAID units. Zone clus-
ters also support access to volume manager devices as if they
were a disk. Zone clusters allow only one zone cluster direct
access to any particular disk or RAID unit. Zone clusters
support fencing of disks and RAID devices. The fencing
feature ensures that a node that has left the cluster cannot
continue to modify data on shared storage, and thus provides
data integrity. The virtual cluster configuration includes
information about storage devices supported in the virtual
cluster.

Volume manager devices. Zone clusters also support
access to volume manager devices. Zone clusters rely upon
the basic zone support for volume manager devices. The

US 9,047,136 B2

15

volume manager administration should ideally be done from
the global zone. Zone clusters support automatic volume
manager reconfiguration after zone cluster membership
changes from the global zone. The virtual cluster configura-
tion includes information about volume manager devices sup-
ported in the virtual cluster.

Networks. Zone clusters support network communications
over both the public and private networks. Public networks
refer to communications outside of the cluster; private net-
works refer to communications between cluster nodes. The
virtual cluster configuration includes information about pub-
lic networks or private networks supported in the virtual
cluster.

Migrating a Virtual Cluster

The administrative work required to configure a global
cluster is cumbersome. After setting up one global cluster—
with the IP addresses, node names, storage devices, file sys-
tems, applications, and so on—system administrators may
shy away from setting up another one, let alone replicating the
first one, because getting all the knobs and dials turned just
right every time is time-consuming and error-prone. Note that
the administrative work required to configure a virtual cluster
can be substantial. The flexibility and utility of a virtual
cluster, however, generally outweighs the complexity of ini-
tial administrative work.

Because an organization can spend much time and effort
testing a virtual cluster configuration, it would be convenient
if that same cluster configuration could be easily replicated at
many customer sites. Global clusters and virtual clusters are
often so complicated that figuring out what information is
essential in any given cluster configuration is a daunting task
indeed. One might think it would be a small matter of copying
a few configuration files (assuming, of course, that they were
organized in some fashion) to the second base cluster, and
rebooting the second base cluster. However, it is not that
simple because there are hundreds of parameters involved
that are spread across multiple machines of the cluster.

If copying a few configuration files is not the answer to
migrating a virtual cluster to another computer system, then
one might consider migrating an Oracle Solaris zone. Since
each virtual node in a virtual cluster is a zone and a zone is a
container for applications with security isolation and appli-
cation fault isolation, in theory that zone could be migrated to
a different machine by using the Oracle Solaris zone migra-
tion tool. Zone migration, unfortunately, only works on single
machine systems and cannot capture the configuration infor-
mation of the virtual cluster. For example, zone migration
knows nothing about the number of nodes in a virtual cluster.
Zone migration knows nothing of cluster application man-
agement configuration information, such as the inter-depen-
dencies among the applications, and system resources used
by these applications. Thus, zone migration cannot migrate a
virtual cluster. Hence, we could use a mechanism for reliably
migrating the entire state of the virtual cluster at many sites.

Migrating a zone cluster captures this configuration infor-
mation and recreates this configuration information on the
target base cluster system. It makes it possible for a cloud in
cloud computing system to dynamically provision a virtual
cluster complete with application configuration information
and data. It reduces the amount of administrative work and the
amount of time needed to migrate a virtual cluster to a new
cluster. It reduces the number of errors by automating as
many manual steps as possible in the process and by using a
single administrative point of operation. It reduces the
amount of work of administrators by enabling the adminis-
trator to operate at the granularity of the virtual cluster. In

10

15

20

25

30

35

40

45

50

55

60

65

16

other words, the administrator does not have to issue com-
mands at the individual zone level and again at the cluster
level.

Capturing Virtual Cluster State

The virtual cluster configuration entails a large number of
settings. A system administrator usually enters this configu-
ration information manually on a target cluster system (the
target cluster system is the base cluster to which the virtual
cluster will be migrated), a potentially time-consuming task
so overwhelming that errors will inevitably arise. To better
understand the complexity of configuring a virtual cluster, let
us look at a more detailed view of a machine and the sub-
systems relevant to configuration.

FIG. 7A shows a two-machine cluster 700 comprising two
machines, machine 702 and machine 728, on which are
implemented one global cluster and one virtual cluster (zone
cluster). Machine 702 is home to a global zone 704, just as
machine 728 is home to the global zone 730; together these
two global zones implement the global cluster. Similarly,
machine 702 is also home to zone 712 (virtual node), just as
machine 728 is home to zone 738 (virtual node); together
these two virtual nodes implement one virtual cluster. Of
course, there may be (and often will be) other virtual clusters
residing on this two-machine cluster 700, which are not
shown in the figure to avoid cluttering the figure.

Inside the global zone 704, which implements a virtual
node of the global cluster on this machine 702, are two major
subsystems relevant to the configuration of both the virtual
cluster and the collection of applications hosted on the virtual
cluster: the Resource Group Manager (RGM) and the Zone
Cluster Manager (ZCM). We will discuss each of these in
turn. These subsystems are replicated in global zone 730 on
machine 728.

The RGM in a traditional cluster functionally behaves as
we described earlier: managing resource groups that are con-
tainers for applications where these resource groups include
resources like applications, network resources and storage
resources. In a system in which a global cluster is cleanly
separated from one or more virtual clusters in accordance
with some embodiments, as depicted in FIG. 7A, the func-
tionality of the RGM is split into multiple components across
a global zone 704 and a zone 712 and is replicated for each
cluster. In particular, there is one global cluster RGM for each
global zone on a machine; for example, FIG. 7A shows a
global cluster RGM 710 residing in global zone 704 on
machine 702, and a global cluster RGM 736 residing in a
global zone 730 on machine 728. Note that for a global cluster
there is typically one set of global cluster RGM components
that spans the machines of the cluster. These primary RGM
components collectively manage the resources (such as appli-
cations and file systems) in the global cluster. Both compo-
nents—global cluster RGM 710 on machine 702 and global
cluster RGM 736 on machine 728—communicate with each
other to perform this collective management of resources in
the global cluster. The RGM components for the global clus-
ter do not manage or monitor resources belonging to any zone
clusters.

For each virtual cluster node, or zone cluster node, there is
a pair of RGM components which is specific to that zone
cluster: on machine 702 the zone cluster RGM 708 compo-
nent resides in the global zone 704, and RGM ZC 714 com-
ponent resides in zone 712 (virtual node). If there were a
second virtual cluster, another pair of these components
would also be present and similarly would be split between
the global zone and the zone for the virtual cluster. Note that
the zone cluster RGM 708 component and the RGM ZC 714
component may communicate with each other, as is illus-

US 9,047,136 B2

17

trated in FIG. 7A by a double-headed arrow line. The zone
cluster RGM 708 on machine 702 and its counterpart, zone
cluster RGM 734 on machine 728, may communicate (shown
by the double-headed arrow line) with each other to exchange
RGM-related information. The reason the primary RGM
components for a Zone Cluster, such as Zone Cluster RGM
708 and Zone Cluster RGM 734, reside in the global zone
(and not the zones) is that the RGM may need permissions
that may not exist in a zone. For example, the RGM may need
to mount file systems into a zone; this operation can only be
performed from inside the global zone. A component inside
an ordinary zone (typically called a “non-global zone™) does
not have the authority to make a file system accessible to
ordinary zones.

Finally, the global cluster RGM 710 in global zone 704 and
the zone cluster RGM 708 may optionally communicate with
each other, as shown by the double-headed arrow dashed line;
such communication will occur if there is an inter-cluster
resource dependency or affinity. Any interaction is limited to
information about the inter-cluster resource dependency or
inter-cluster resource group affinity.

The RGM ZC 714 in zone 712 manages the resources (such
as the resources in resource group 1 716 and the resources in
resource group 2 718 in FIG. 7A) in its zone and is responsible
for starting and stopping these resources (which starts and
stops applications), as well as monitoring their status. An
application administrator inside any node of a zone cluster
can manage all of the resources across all nodes of that spe-
cific zone cluster and cannot affect any other cluster. An
application administrator in the global cluster can administer
resources in the global cluster or any specified zone cluster.
Similarly, the RGM ZC 740 in zone 738 manages the
resources (such as the resources in resource group 1 742 and
the resources in resource group 2 744 in FIG. 7A) in its zone
and is responsible for starting and stopping these resources
(which starts and stops applications), as well as monitoring
their status.

The zone cluster RGM 708 also communicates with a
subsystem in the Oracle® Solaris Cluster operating system
kernel 722 called the Cluster Configuration Repository man-
ager (CCR) 720, a private, cluster-wide database that main-
tains all important information about the configuration state
of'the cluster on non-volatile storage. We shall expand on the
important role of the CCR when we later discuss the state of
the virtual cluster. Like its counterpart in global zone 704, the
zone cluster RGM 734 in global zone 730 on machine 728
also communicates with a CCR 746 in the Oracle Solaris
Cluster operating system kernel 748.

Within the global zone 704, the zone cluster manager 706
also communicates with the CCR manager 720 to create or
destroy CCR data information maintained by the CCR man-
ager 720, add new zone-related information, delete existing
zone-related information, or update existing zone-related
information. Similarly, within the other global zone 730, the
zone cluster manager 732 also communicates with its CCR
manager 746 to create or destroy CCR data information main-
tained by the CCR manager 746, add new zone-related infor-
mation, delete existing zone-related information, or update
existing zone-related information. We will see the role of the
zone cluster manager later during our extended discussion of
the CCR manager.

FIG. 7B shows a detailed view of just one machine 750 in
accordance with some embodiments. Of course, this particu-
lar machine is just one of several such machines that are in the
base cluster configuration, supporting one or more virtual
clusters. This figure illustrates much of the same information
from FIG. 7A but shows two zone clusters (or virtual clus-

40

45

18

ters); more importantly, FIG. 7B shows the all-important
storage system 799 we alluded to earlier, which stores the
cluster configuration data. The reason for the two zone clus-
ters is to make it clear that there is one global cluster and one
or more zone clusters and to show the correspondence
between a RGM ZC component in a zone with its counterpart
RGM component in the global zone. For convenience, we
name these virtual clusters ZC-A and ZC-B.

As before, machine 750 is divided into the same three
major sections: the Oracle Solaris Cluster operating system
kernel 768, a global zone 752 for the global cluster, and two
zones implementing the virtual nodes of two virtual clusters.
Further, FIG. 7B shows a storage system 799 associated with
machine 750. In one embodiment, this storage system may be
local to the machine. In other embodiments, this storage may
be external to machine 750 and may or may not be shared with
other machines.

Inside the global zone 752, which implements a virtual
node of the global cluster on this machine 750, are the two
major subsystems relevant to the configuration of both the
virtual cluster and the collection of applications hosted on the
virtual cluster: the Resource Group Manager and the Zone
Cluster Manager.

As explained earlier in FIG. 7A, the functionality of the
RGM is split into multiple components across a global zone
and one or more zones and is replicated for each cluster. In
particular, there is one global cluster RGM for each global
zone on a machine; for example, FIG. 7B shows a global
cluster RGM 755 residing in global zone 752 on machine 750.
Note that global cluster RGM 755 is dashed to indicate that
the component is active in the global zone 752 but that the
following discussion is directed to virtual clusters only. We
have already discussed that component’s functionality in
FIG. 7A.

Zone cluster ZC-A RGM 756 in the global zone 752 com-
municates with RGM ZC ZC-A 760 in the zone 758 (virtual
node). In zone 758 the RGM ZC ZC-A 760 manages the
resources (such as the resources of resource group 1 762 and
the resources of resource group 2 764) in its zone and is
responsible for starting and stopping these resources (which
includes starts and stops of applications), as well as monitor-
ing their status. Similarly, zone cluster ZC-B RGM 758 in the
global zone 752 communicates with its counterpart RGM ZC
ZC-B 761 in the zone 759 (virtual node). In zone 759 the
RGM ZC ZC-B 761 manages the resources of a single
resource group, such as resource group 3 765, in its zone and
is responsible for starting and stopping these resources, as
well as monitoring status.

An administrator can issue commands (configuration man-
agement application commands 776) to the zone cluster
ZC-A RGM 756 or to the zone cluster ZC-B RGM 758
directly to create, or modify the configuration of applications.
The administrator may also issue commands “clzc commands
774” to the zone cluster manager 754 in the global zone 752;
“clzc” is short for “clzonecluster.”

Besides communicating with the RGM ZC ZC-A 760
counterpart in a zone, the zone cluster ZC-A RGM 756 in the
global zone also communicates with a subsystem in the
Oracle Solaris Cluster operating system kernel 768 called the
Cluster Configuration Repository manager (CCR) 766, a pri-
vate, cluster-wide database that maintains all important infor-
mation about the configuration state of the cluster on non-
volatile storage. The zone cluster ZC-A RGM 756
communicates with the CCR manager 766 by issuing read/
write RGM info 772 or application management information
772. Similarly, the zone cluster ZC-B RGM 758 also com-

US 9,047,136 B2

19

municates with the CCR manager 766 by issuing similar
read/write RGM information 772 or application management
information 772.

Within the global zone 752, the zone cluster manager 754
also communicates with the CCR manager 766 to create or
destroy CCR 770 the CCR data information maintained by
the CCR manager 766, add new zone-related information,
delete existing zone-related information, or update existing
zone-related information. This information is important con-
figuration information for the virtual clusters—this is the
information that is migrated to a target cluster system.

Let us examine the CCR in detail. In the Oracle Solaris
Cluster operating system kernel 768, the term “CCR” is typi-
cally used to refer both to the subsystem that manages the data
and the data itself. To avoid confusion, we will be explicit and
say “CCR manager 766 when referring to the subsystem and
“CCR data” when referring to the data itself. The CCR sub-
system is a private, cluster-wide, distributed database for
storing information that pertains to the configuration and state
of the cluster. To avoid corrupting configuration data, each
node should ideally be aware of the current state of the cluster
resources. The CCR manager 766 ensures that all nodes have
a consistent view of the cluster. The CCR data is updated
when error or recovery situations occur, or when the general
status of the cluster changes. The CCR manager 766 stores its
data on non-volatile storage, such as storage system 799, in
accordance with some embodiments, by reading and writing
CCR data 778 directly from and to the storage subsystem.
Note that this storage system can be any non-volatile storage
device that survives failure, and as we mentioned before may
be local or external, shared or not.

The data stored in the CCR typically contains information
about at least the following: cluster and node names, cluster
transport configuration, the names of volume manager disk
sets, list of nodes that can master each disk group, operational
parameter values for data services, paths to data service call-
back methods, device identification configuration, cluster sta-
tus, and so on.

The CCR data may be organized under a single directory
on storage system 799 (the data on such a storage system
should survive system failures) that is typically local to the
node: /etc/cluster/ccr 780. This directory includes all the data
cited earlier, but may be refined to include not only zone
cluster-specific data but global cluster-specific data, thus
cleanly separating zone cluster-specific data from global
cluster-specific data. Thus, the global cluster 782 data may be
organized into a subdirectory global (for global zone) /etc/
cluster/ccr/global; the zone cluster data for each specific zone
cluster may be organized in a different subdirectory, where
the name of the subdirectory may be the name of the virtual
cluster. This clean separation will simplify the process of
identifying all the important state information that should be
captured in order to migrate the state of a virtual cluster to a
second cluster system.

In accordance with some embodiments, the CCR data
stored on behalf of each virtual cluster may be recorded in a
separate subdirectory of /etc/cluster/ccr where the subdirec-
tory may be named after the virtual cluster name. Thus, there
is /etc/cluster/cct/ZC-A 784 for the virtual cluster “ZC-A”
and /etc/cluster/ccr/ZC-B 792 for virtual cluster “ZC-B.” In
the subdirectory /etc/cluster/ccr/ZC-A 784 for the zone clus-
ter “ZC-A” 784 data may be organized further into at least
three configuration states, each of which may be organized
into independent subdirectories: virtual cluster configuration
state 786, applications configuration state 788, and virtual
nodes configuration state 790. Similarly, on behalf of the
second zone cluster “ZC-B” 792, the CCR data stored under

20

40

45

50

55

20

the ZC-B subdirectory of /etc/cluster/ccr 780 for the zone
cluster 759 data may be similarly organized further into at
least three configuration states, each of which may be orga-
nized into independent subdirectories: virtual cluster con-
figuration state 793, applications configuration state 794, and
virtual nodes configuration state 795. This organization of the
CCR data into independent subdirectories for the global clus-
ter and each of the zone clusters cleanly separates the con-
figuration data; this separation simplifies the process of cap-
turing the configuration state of the global cluster and each of
the zone clusters.

FIG. 8 expands on the three configuration states, in accor-
dance with some embodiments. For each virtual cluster, the
configuration state information may be stored under a subdi-
rectory named after the virtual cluster’s assigned name, as
mentioned earlier. For example, FIG. 8 shows the subdirec-
tory for a virtual cluster named “zcfoo: /etc/cluster/ccr/ZC-A/
800.

The virtual cluster configuration state 802 may be a col-
lection of information that fully specifies the zone cluster
environment for the virtual cluster in question. Specifically,
this information includes, but is not limited to, the items
shown in the figure. The names of the virtual cluster nodes
making up the virtual cluster are included in the configuration
state. Note that in this embodiment the virtual cluster con-
figuration state 802 may not include the name of the virtual
cluster because that name happens to be embedded in the
CCR path as explained previously, that is, ZC-A; the name
could just as easily be incorporated into the state. Also
included in the state is the mapping of the virtual cluster’s
virtual nodes to their machine counterparts. That is, for every
virtual node in the virtual cluster, we should know which
machine that virtual node resides on. Next, included in the
state are the network resources such as IP addresses. The
names and paths of cluster file systems and failover file sys-
tems are included in the state. Resources such as CPUs and
memory are also part of the configuration state. Security
privileges, such as Oracle Solaris operating system privi-
leges, are included in the configuration state.

The application configuration state 804 may be a collection
of the resource types, the resource groups, and the resources
for all the applications contained in the virtual cluster, in
accordance with some embodiments. This information fully
describes all applications in the virtual cluster.

The third configuration state for the virtual cluster may be
the virtual nodes configuration state 806 in accordance with
some embodiments. This information describes the configu-
ration of each virtual node, together with details of software
packages information and patches installed in the virtual node
on each machine in the virtual cluster. This information may
not reside in the Cluster Configuration Repository. Instead,
this information may be maintained by the Oracle Solaris
operating system in its state 808 as FIG. 8 illustrates.

FIG. 9 shows the collection of virtual cluster executables
900 that may be identified, in accordance with some embodi-
ments, as part of the state of the virtual cluster. Specifically,
we identify for each virtual node of the virtual cluster both the
Oracle Solaris operating system binaries 904 and the Oracle
Solaris Cluster binaries 906, collectively called the virtual
node “1” executables 902. (The Oracle Solaris Cluster bina-
ries 906 may be cluster-specific binaries that the Oracle
Solaris operating system may invoke to do cluster-specific
tasks.) Further, we identify any application binaries 908
located on any virtual node in the virtual cluster; there may be
some virtual nodes that are not hosting any application, and so
there will be no application binaries. This collection of
executables captures all the executables on virtual node “1,”

US 9,047,136 B2

21

which for the purposes of illustration we give to the first
virtual node in the virtual cluster. Similarly, there is a collec-
tion of executables for all remaining virtual nodes in the
virtual cluster. FIG. 9 illustrates this through overlapping
rectangles and assigning a name to each virtual node collec-
tion of executables: virtual node “2” executables 910 and
virtual node “3” executables 912. Finally, there may be the
data associated with each application—applications data 914.

FIG. 10 presents a flowchart that illustrates a process for
migrating the virtual state of a virtual cluster on a first com-
puter system to a second computer system in accordance with
some embodiments. Note that the specific arrangement of
steps shown in the figure should not be construed as limiting
the scope of the embodiments.

The process can begin by capturing the state of a virtual
cluster of the first computer system (step 1002). The virtual
cluster includes one or more virtual nodes. The captured state
of a virtual cluster completely specifies the virtual cluster.

Next, the system instantiates this captured state of the
virtual cluster on a second computer system (step 1004). After
this step completes, the virtual cluster on the second computer
system becomes operational and can serve client requests just
as the original virtual cluster did on the first computer system.

FIG. 11 presents a flowchart that illustrates a process for
capturing the virtual state of a virtual cluster in accordance
with some embodiments. Note that the specific arrangement
of steps shown in the figure should not be construed as lim-
iting the scope of the embodiments. For example, some vir-
tual cluster state information may be collected before halting
the virtual cluster. Typically, the system administrator
executes the process illustrated in the flowchart. We assume
that the system administrator is already logged in to the global
zone on any machine.

The process can begin by halting the selected virtual cluster
(step 1102), which the system administrator has already iden-
tified to be migrated to a second computer system (the target).
Halting the virtual cluster includes stopping all activity in the
cluster, such as shutting down all applications serving clients
and denying further service to clients. In the Oracle Solaris
Virtual Cluster, for example, in accordance with some
embodiments, a system administrator would perform the
clzonecluster halt command to halt the virtual cluster while
logged in to the global zone on any machine.

Next, the administrator captures the virtual cluster configu-
ration state, application configuration state, and virtual nodes
configuration state into a collection of configuration files
(step 1104). FIG. 8 shows the state that is captured. Note that
the captured state may be stored in any convenient manner.
This step and the next step of this process can be accom-
plished using the Oracle Solaris command clzonecluster
detach; it is convenient to have a single command to accom-
plish a long sequence of error-prone operations.

Next, the system captures the binaries associated with the
operating system, the virtual cluster, and all applications into
a collection of executables files (step 1106).

Next, these configuration files and executables files are
bundled into at least one archive file (step 1108). A software
tool that may be used, in some embodiments, to create this
archive file is the UNIX™ tar command.

Finally, the administrator may remove the virtual cluster
from the first computer system (step 1110), in one embodi-
ment. It is not strictly necessary to remove the virtual cluster
in other embodiments.

Instantiating a Virtual Cluster

FIG. 12 presents a flowchart that illustrates a process for
instantiating the captured virtual state of a virtual cluster in
accordance with some embodiments. Note that the specific

10

15

20

25

30

35

40

45

50

55

60

65

22

arrangement of steps shown in the figure should not be con-
strued as limiting the scope of the embodiments. We assume
that a system administrator has logged in to a global zone on
any node of the second computer system and has transferred
the archive files to each machine of the second computer
system.

The process can begin by extracting the archive files onto
each machine of the second computer system (step 1202).
The UNIX™ tar command may be used to extract the archive
files.

Next, the system imports the virtual cluster state (step
1204) from the archive files. The virtual cluster state includes
the virtual cluster configuration state, the application configu-
ration state and the virtual nodes configuration state.

Next, the configuration of the virtual cluster may be modi-
fied to match the needs of the second computer system (step
1206). Since the machine names of the second computer
system will usually differ from the machine names of'the first
computer system, which is serving as the source, the admin-
istrator may need to modify the machine names hosting the
virtual cluster nodes on the second computer system. It is also
possible that the second computer system may need different
IP addresses, and so the administrator may need to adjust the
IP addresses, too. At the end of the step, the new virtual cluster
configuration has been established.

Next, resources required by the virtual cluster are created
(1208) under the command of the administrator.

Next, the administrator imports the application configura-
tion state for all applications that can be hosted in the virtual
cluster (step 1210). In the Oracle Solaris Cluster, the admin-
istrator may execute the clzonecluster attach command to
bring the virtual cluster into an installed state. This command
may load the RGM resource type information, the resource
group information, and the resource information, among
other things.

Next, the binaries from the collection of executables files
are extracted. These binaries associated with the operating
system, the virtual cluster, and the applications are loaded
into the virtual cluster (step 1212).

Next, the administrator activates the new virtual cluster
(step 1214). Another term used is “booting” the virtual clus-
ter.

Finally, the administrator imports the application data into
the virtual cluster (step 1216).

FIG. 13 illustrates a computer system in accordance with
some embodiments.

A computer or computer system can generally be any sys-
tem that can perform computations. Specifically, a computer
can be a microprocessor based system which may include
multiple processing cores, a network processor based system,
adigital signal processor based system, a portable computing
device, a personal organizer, a distributed computing plat-
form based system, or any other computing system now
known or later developed.

Computer system 1302 comprises processor 1304,
memory 1306, and storage 1308. Computer system 1302 can
be coupled with display 1314, keyboard 1310, and pointing
device 1312. Storage 1308 can generally be any device that
can store data. Specifically, a storage device can be a mag-
netic, an optical, or a magneto-optical storage device, or it can
be based on flash memory and/or battery-backed up memory.
Storage 1308 can store applications 1316, operating system
1318, and data 1320. Applications 1316 can include instruc-
tions that when executed by computer 1302 cause computer
1302 to perform one or more processes described in this
disclosure.

US 9,047,136 B2

23

FIG. 14 illustrates an apparatus in accordance with some
embodiments. Apparatus 1402 can comprise a number of
mechanisms which may communicate with one another via a
wired or wireless communication channel. Apparatus 1402
may be realized using one or more integrated circuits. Appa-
ratus 1402 may be integrated with a computer system, or it
may be realized as a separate device which is capable of
communicating with other computer systems and/or devices.
Specifically, apparatus 1402 can comprise capturing mecha-
nism 1404 and instantiating mechanism 1406.

In some embodiments, capturing mechanism 1404 may be
configured to capture the state of a virtual cluster on a first
computer system where a virtual cluster includes one or more
virtual nodes. Instantiating mechanism 1406 may be config-
ured to instantiate the captured state of the virtual cluster on
the second computer system.

CONCLUSION

The above description is presented to enable any person
skilled in the art to make and use the embodiments. Various
modifications to the disclosed embodiments will be readily
apparent to those skilled in the art, and the general principles
defined herein are applicable to other embodiments and appli-
cations without departing from the spirit and scope of the
present disclosure. Thus, the present invention is not limited
to the embodiments shown, but is to be accorded the widest
scope consistent with the principles and features disclosed
herein.

The data structures and code described in this disclosure
can be partially or fully stored on a computer-readable storage
medium and/or a hardware module and/or hardware appara-
tus. A computer-readable storage medium includes, but is not
limited to, volatile memory, non-volatile memory, magnetic
and optical storage devices such as disk drives, magnetic tape,
CDs (compact discs), DVDs (digital versatile discs or digital
video discs), or other media, now known or later developed,
that are capable of storing code and/or data. Hardware mod-
ules or apparatuses described in this disclosure include, but
are not limited to, application-specific integrated circuits
(ASICs), field-programmable gate arrays (FPGAs), dedi-
cated or shared processors, and/or other hardware modules or
apparatuses now known or later developed.

The methods and processes described in this disclosure can
be partially or fully embodied as code and/or data stored in a
computer-readable storage medium or device, so that when a
computer system reads and executes the code and/or data, the
computer system performs the associated methods and pro-
cesses. The methods and processes can also be partially or
fully embodied in hardware modules or apparatuses, so that
when the hardware modules or apparatuses are activated, they
perform the associated methods and processes.

Note that the methods and processes can be embodied
using a combination of code, data, and hardware modules or
apparatuses. The foregoing descriptions of embodiments
have been presented only for purposes of illustration and
description. They are not intended to be exhaustive or to limit
the present invention to the forms disclosed. Accordingly,
many modifications and variations will be apparent to prac-
titioners skilled in the art. Additionally, the above disclosure
is not intended to limit the present invention. The scope of the
present invention is defined by the appended claims.

What is claimed is:

1. A method for migrating a state of a virtual cluster,
comprising:

using at least one computer to capture the state of the

virtual cluster on a first computer system, wherein the

10

20

25

40

45

50

55

65

24

virtual cluster includes one or more virtual nodes, and
wherein a given virtual node of the one or more virtual
nodes represents a machine; and

instantiating the captured state of the virtual cluster on a

second computer system,

wherein the captured state comprises an address for a net-

work resource, names and paths of a file system and a
failover file system for the virtual cluster, CPU and
memory information for the virtual cluster, security
privileges, and, for each of the one or more virtual nodes,
a name for the virtual node and a mapping of the virtual
node to a physical machine that the virtual node resides
on.

2. The method of claim 1, wherein capturing the state of the
virtual cluster on the first computer system further comprises:

extracting the state of the virtual cluster, wherein the state

includes at least one of:

a configuration state of one or more applications; and

binaries associated with an operating system and the
virtual cluster.

3. The method of claim 2, wherein the captured state of the
virtual cluster includes at least one of:

one or more file systems;

one or more storage devices; and

one or more network resources.

4. The method of claim 2, wherein the captured state of the
virtual cluster includes at least one of resources, resource
types, and resource groups.

5. The method of claim 2, wherein the captured state of the
virtual cluster includes at least one of software package infor-
mation and patches installed in the virtual node of each
machine.

6. The method of claim 1, wherein instantiating the cap-
tured state of the virtual cluster on the second computer
system further comprises:

receiving the captured state of the virtual cluster on each

machine of the second computer system;

creating resources required by the virtual cluster on each

machine, wherein the resources include at least one or
more file systems, one or more devices, or one or more
IP addresses;
modifying configuration details of the virtual cluster on
each machine of the second computer system; and
activating the virtual cluster on the second computer sys-
tem.

7. The method of claim 1, wherein representing the
machine involves the given virtual node:

managing a portion of the resources of the machine,

wherein resources include at least one of processors,
memory, or schedulers;

hosting applications that share the managed portion of the

resources within the virtual node; and

isolating faults, wherein faults include at least one of appli-

cation faults, user faults, or system faults.

8. The method of claim 7, wherein the given virtual node is
constructed using operating system virtualization.

9. A non-transitory computer-readable storage medium
storing instructions that when executed by a computer cause
the computer to perform a method for migrating a state of a
virtual cluster, the method comprising:

capturing the state of the virtual cluster on a first computer

system, wherein the virtual cluster includes one or more
virtual nodes, and wherein a given virtual node of the
one or more virtual nodes represents a machine; and

instantiating the captured state of the virtual cluster on a

second computer system,

US 9,047,136 B2

25

wherein the captured state comprises an address for a net-
work resource, names and paths of a file system and a
failover file system for the virtual cluster, CPU and
memory information for the virtual cluster, security
privileges, and, for each of the one or more virtual nodes,
a name for the virtual node and a mapping of the virtual
node to a physical machine that the virtual node resides
on.

10. The non-transitory computer-readable storage medium
of’claim 9, wherein capturing the state of the virtual cluster on
the first computer system further comprises:

extracting the state of the virtual cluster, wherein the state

includes at least one of:

a configuration state of one or more applications; and

binaries associated with an operating system and the
virtual cluster.

11. The non-transitory computer-readable storage medium
of claim 10, wherein the captured state of the virtual cluster
includes at least one of:

one or more file systems;

one or more storage devices;

one or more network resources;

one or more operating system resources; and

a set of operating system privileges.

12. The non-transitory computer-readable storage medium
of claim 10, wherein the captured state of the virtual cluster
includes at least one of resources, resource types, and
resource groups.

13. The non-transitory computer-readable storage medium
of claim 10, wherein the captured state of the virtual cluster
includes at least one of a configuration of the virtual nodes,
software package information, and patches installed in the
virtual node of each machine.

14. The non-transitory computer-readable storage medium
of claim 9, wherein instantiating the captured state of the
virtual cluster on the second computer system further com-
prises:

receiving the captured state of the virtual cluster on each

machine of the second computer system;

creating resources required by the virtual cluster on each

machine, wherein the resources include one or more file
systems, one or more devices, or one or more IP
addresses;

modifying configuration details of the virtual cluster on

each machine of the second computer system; and
activating the virtual cluster on the second computer sys-
tem.

15. The non-transitory computer-readable storage medium
of claim 9, wherein representing the machine involves the
given virtual node:

10

15

20

25

30

35

40

45

26

managing a portion of the resources of the machine,
wherein resources include at least one of processors,
memory, or schedulers;

hosting applications that share the managed portion of the

resources within the virtual node; and

isolating faults, wherein faults include at least one of appli-

cation faults, user faults, or system faults.

16. The non-transitory computer-readable storage medium
of claim 15, wherein the given virtual node is constructed
using operating system virtualization.

17. A computer system for migrating a state of a virtual
cluster, comprising:

a processor; and

a memory;

wherein the computer system is configured to,

capture the state of the virtual cluster on a first computer
system, wherein the virtual cluster includes one or
more virtual nodes, and wherein a given virtual node
of'the one or more virtual nodes represents a machine;
and

instantiate the captured state of the virtual cluster on a
second computer system,

wherein the captured configuration state of the virtual clus-

ter comprises an address for a network resource, names
and paths of a file system and a failover file system for
the virtual cluster, CPU and memory information for the
virtual cluster, security privileges, and, for each of the
one or more virtual nodes, a name for the virtual node
and a mapping of the virtual node to a physical machine
that the virtual node resides on.

18. The computer system of claim 17, wherein, while cap-
turing the state of the virtual cluster on the first computer
system, the computer system is configured to extract the state
of the virtual cluster, and wherein the state includes at least
one of:

a configuration state of one or more applications;

binaries associated with one or more applications;

data associated with one or more applications; and

binaries associated with the operating system and the vir-

tual cluster.

19. The computer system of claim 17, wherein the captured
state of the virtual cluster includes at least one of:

one or more file systems;

one or more storage devices;

one or more network resources.

20. The computer system of claim 17, wherein the captured
state of the virtual cluster includes at least one of resources,
resource types, and resource groups.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 29,047,136 B2 Page 1 of 1
APPLICATION NO. : 12/813744

DATED : June 2, 2015

INVENTORC(S) : Thanga et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In drawings,

On Drawing sheet 13 of 14, in figure 12, under reference numeral 1212, line 1, delete
“EXECUTBLES” and insert -- EXECUTABLES --, therefor.

In specification,
Column 3, lines 36-37, delete “embodiments” and insert -- embodiments. --, therefor.

Column 6, line 53, delete “that that” and insert -- that --, therefor.

Signed and Sealed this
Ninth Day of February, 2016

Decbatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

